

Math 150 - Week-In-Review 5 Solutions Saud Hussein

Section 4.1 – Properties of Root Functions and Their Graphs

1. (a) Determine the domain of $f(x) = \sqrt{6 - 5x - x^2}$. Solution:

Since the function involves an even root, we need $6 - 5x - x^2 \ge 0$, so

$$-(x^2 + 5x - 6) \ge 0$$

-(x - 1)(x + 6) \ge 0
(x - 1)(x + 6) \le 0.

Creating a table and testing values around x = -6 and x = 1,

Interval	Test x	(x-1)(x+6)	< 0 or > 0?
<i>x</i> < -6	-7	(-8)(-1) = 8	greater
-6 < x < 1	0	(-1)(6) = -6	less
x > 1	2	(1)(8) = 8	greater

Therefore, the domain of f is [-6, 1].

Instead of using test values and a sign diagram, we can sketch the graph of

$$g(x) = 6 - 5x - x^2.$$

Since $g(x) \ge 0$ when $-6 \le x \le 1$, we again find that the domain of f is [-6,1].



(b) Sketch the graph of f, including any intercepts and asymptotes. Solution:

Since $f(0) = \sqrt{6}$, the vertical intercept is $(0, \sqrt{6})$.

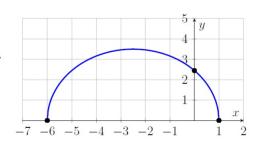
Also,

$$0 = f(x) = \sqrt{6 - 5x - x^2} = \sqrt{-(x - 1)(x + 6)}$$

$$0 = (x - 1)(x + 6),$$

so, there are horizontal intercepts at x = 1 and x = -6.

By part (a), the domain of f is [-6,1] and $f(x) \ge 0$ for an even root function.



2. (a) Determine the domain of
$$f(x) = \sqrt{\frac{(x+2)(x-3)}{x-1}}$$
. Solution:

Since the function involves an even root of a rational expression, we need

$$\frac{(x+2)(x-3)}{x-1} \ge 0, \qquad x \ne 1.$$

Creating a table and testing values around x = -2, x = 1, and x = 3,

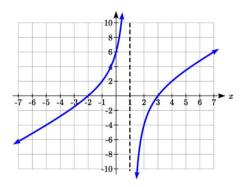
Interval	Test x	(x+2)(x-3)/(x-1)	< 0 or > 0?
x < -2	-3	(-1)(-6)/(-4) = -3/2	less
-2 < x < 1	0	(2)(-3)/(-1) = 6	greater
1 < x < 3	2	(4)(-1)/1 = -4	less
x > 3	4	(6)(1)/3 = 2	greater

Therefore, the domain of f is $[-2, 1) \cup [3, \infty)$.

Instead of using test values and a sign diagram, we can sketch the graph of

$$g(x) = \frac{(x+2)(x-3)}{x-1}.$$

Since $g(x) \ge 0$ when $-2 \le x < 1$ or $x \ge 3$, we again find that the domain of f is $[-2,1) \cup [3,\infty)$.



(b) Sketch the graph of f, including any intercepts and asymptotes. Solution:

Since $f(0) = \sqrt{6}$, the vertical intercept is $(0, \sqrt{6})$.

Also,

$$0 = f(x) = \sqrt{\frac{(x+2)(x-3)}{x-1}}$$

$$0 = (x+2)(x-3),$$

so, there are horizontal intercepts at x = -2 and x = 3.

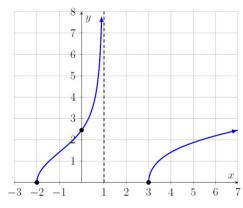
By part (a), the domain of f is $[-2,1) \cup [3,\infty)$, and as $x \to 1^-$, $f(x) \to \infty$.

Therefore, there is a vertical asymptote at x = 1.

We also know that for an even root function, $f(x) \ge 0$.

Since the degree of the polynomial in the numerator of the rational expression is larger than the degree in the denominator, as

$$x \to \infty$$
, $f(x) \to \infty$.



3. (a) Determine the domain of $f(x) = \frac{2x}{\sqrt[3]{x^3 - 27}}$.

Solution:

Since the function involves an odd root of a rational expression,

$$x^3-27\neq 0$$

$$x^3 \neq 27$$

$$x \neq 3$$
.

Therefore, the domain of f is $(-\infty, 3) \cup (3, \infty)$.

(b) Sketch the graph of f, including any intercepts and asymptotes. Solution:

Since f(0) = 0, the vertical intercept is (0,0).

Also,

$$0 = f(x) = \frac{2x}{\sqrt[3]{x^3 - 27}}$$

$$0=2x$$

so, the only horizontal intercept is at x = 0.

Creating a table and testing values around x = 0 and x = 3,

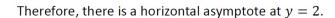
Interval	Test x	f(x)	< 0 or > 0?
<i>x</i> < 0	-1	$(-2)/\sqrt[3]{-28} = 2/\sqrt[3]{28}$	greater
0 < x < 3	1	$2/\sqrt[3]{-26} = -2/\sqrt[3]{26}$	less
x > 3	4	$8/\sqrt[3]{37}$	greater

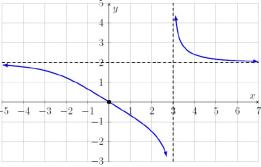
Using the table, as $x \to 3^-$, $f(x) \to -\infty$, and as $x \to 3^+$, $f(x) \to \infty$.

Therefore, there is a vertical asymptote at x = 3.

By part (a), the domain of f is $(-\infty, 3) \cup (3, \infty)$, and as $x \to \pm \infty$,

$$f(x) = \frac{2x}{\sqrt[3]{x^3 - 27}} \approx \frac{2x}{\sqrt[3]{x^3}} = \frac{2x}{x} \to 2.$$





4. (a) Determine the domain of $f(x) = \frac{2x}{\sqrt{x^2 - 16}}$.

Solution:

Since the function involves an even root, we need $x^2 - 16 > 0$, so

$$(x-4)(x+4) > 0.$$

Creating a table and testing values around x = -4 and x = 4,

Interval	Test x	(x-4)(x+4)	< 0 or > 0?
x < -4	-5	(-9)(-1) = 9	greater
-4 < x < 4	0	(-4)(4) = -16	less
x > 4	5	(1)(9) = 9	greater

Therefore, the domain of f is $(-\infty, -4) \cup (4, \infty)$.

(b) Sketch the graph of f, including any intercepts and asymptotes. Solution:

Since the domain does not include x = 0, the function does not cross the x or y-axis.

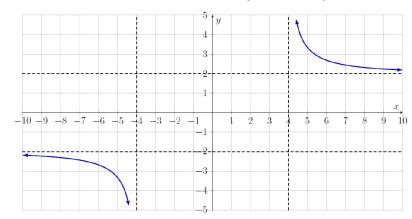
Using the table, as $x \to -4^-$, $f(x) \to -\infty$, and as $x \to 4^+$, $f(x) \to \infty$.

Therefore, there are vertical asymptotes at x = -4 and x = 4.

As $x \to \pm \infty$,

$$f(x) = \frac{2x}{\sqrt{x^2 - 16}} \approx \frac{2x}{\sqrt{x^2}} = \frac{2x}{|x|} \to \pm 2.$$

Therefore, there are also horizontal asymptotes at y = -2 and y = 2.



5. Park rangers may construct rock piles to mark trails or other landmarks. A mound of gravel in the shape of a right circular cone with the height equal to twice the radius of the base is constructed. The volume V of such a cone as a function of the radius r is given by

$$V(r) = \frac{2}{3}\pi r^3.$$

Determine the radius of the mound of gravel if the volume is 100 ft³. Solution:

Let V = V(r). Solving for the radius r,

$$V = V(r) = \frac{2}{3}\pi r^3 \Rightarrow \frac{3V}{2\pi} = r^3$$

$$r=r(V)=\sqrt[3]{\frac{3V}{2\pi}}.$$

Evaluating the function at V = 100,

$$r(100) = \sqrt[3]{\frac{3(100)}{2\pi}} = \sqrt[3]{\frac{150}{\pi}} \approx 3.63 \text{ feet.}$$

Section 4.3 – Solving Equations Involving Root and Power Functions

1. Solve the following radical equations.

$$(a) \sqrt{15 - 2x} = x$$

Solution:

$$\sqrt{15 - 2x} = x$$

$$(\sqrt{15 - 2x})^2 = x^2$$

$$15 - 2x = x^2$$

$$x^2 + 2x - 15 = 0$$

$$(x - 3)(x + 5) = 0$$

Therefore, x = 3 and x = -5 are potential solutions to the radical equation.

Checking x = -5,

$$\sqrt{15 - 2x} = x$$

$$\sqrt{15 - 2(-5)} \stackrel{?}{=} -5$$

$$\sqrt{15 + 10} \stackrel{?}{=} -5$$

$$\sqrt{25} \stackrel{?}{=} -5$$

$$5 \neq -5$$

This means x = -5 is an extraneous solution and does not solve the equation.

Checking x = 3,

$$\sqrt{15 - 2x} = x$$

$$\sqrt{15 - 2(3)} \stackrel{?}{=} 3$$

$$\sqrt{15 - 6} \stackrel{?}{=} 3$$

$$\sqrt{9} \stackrel{?}{=} 3$$

$$3 = 3.$$

Therefore, x = 3 is the solution to the radical equation.

(b)
$$\sqrt[3]{2x-4}+7=5$$

Solution:

$$\sqrt[3]{2x-4} + 7 = 5$$

$$\sqrt[3]{2x-4} = -2$$

$$(\sqrt[3]{2x-4})^3 = (-2)^3$$

$$2x-4 = -8$$

$$2x = -4$$

$$x = -2$$

Since we raised both sides to an odd power, there is no need to check the solution.

(c)
$$\sqrt{3x+7} + \sqrt{x+2} = 1$$

Solution:

$$\sqrt{3x+7} + \sqrt{x+2} = 1$$

$$\sqrt{3x+7} = 1 - \sqrt{x+2}$$

$$(\sqrt{3x+7})^2 = (1 - \sqrt{x+2})^2$$

$$3x+7 = 1 + (x+2) - 2\sqrt{x+2}$$

$$3x+7 = x+3 - 2\sqrt{x+2}$$

$$2x+4 = -2\sqrt{x+2}$$

$$x+2 = -\sqrt{x+2}$$

$$(x+2)^2 = (-\sqrt{x+2})^2$$

$$x^2 + 4x + 4 = x+2$$

$$x^2 + 3x + 2 = 0$$

$$(x+1)(x+2) = 0$$

Therefore, x = -1 and x = -2 are potential solutions to the radical equation.

Checking x = -1,

$$\sqrt{3x + 7} + \sqrt{x + 2} = 1$$

$$\sqrt{3(-1) + 7} + \sqrt{-1 + 2} \stackrel{?}{=} 1$$

$$\sqrt{4} + \sqrt{1} \stackrel{?}{=} 1$$

$$2 + 1 \stackrel{?}{=} 1$$

$$3 \neq 1.$$

This means x = -1 is an extraneous solution and does not solve the equation.

Checking
$$x = -2$$
,
$$\sqrt{3x + 7} + \sqrt{x + 2} = 1$$

$$\sqrt{3(-2) + 7} + \sqrt{-2 + 2} \stackrel{?}{=} 1$$

$$\sqrt{1} + \sqrt{0} \stackrel{?}{=} 1$$

$$1 + 0 \stackrel{?}{=} 1$$

$$1 = 1$$
.

Therefore, x = -2 is the solution to the radical equation.

(d)
$$\sqrt{2x+3} - \sqrt{x+1} = 1$$

Solution:

$$\sqrt{2x+3} - \sqrt{x+1} = 1$$

$$\sqrt{2x+3} = 1 + \sqrt{x+1}$$

$$(\sqrt{2x+3})^2 = (1 + \sqrt{x+1})^2$$

$$2x+3 = 1 + (x+1) + 2\sqrt{x+1}$$

$$2x+3 = x+2 + 2\sqrt{x+1}$$

$$x+1 = 2\sqrt{x+1}$$

$$(x+1)^2 = (2\sqrt{x+1})^2$$

$$x^2 + 2x + 1 = 4x + 4$$

$$x^2 - 2x - 3 = 0$$

$$(x-3)(x+1) = 0$$

Therefore, x = -1 and x = 3 are potential solutions to the radical equation.

Checking
$$x = -1$$
,

$$\sqrt{2x+3} - \sqrt{x+1} = 1$$

$$\sqrt{2(-1)+3} - \sqrt{-1+1} \stackrel{?}{=} 1$$

$$\sqrt{1} - \sqrt{0} \stackrel{?}{=} 1$$

$$1 - 0 \stackrel{?}{=} 1$$

$$1 = 1.$$

Therefore, x = -1 is a solution to the radical equation.

Checking
$$x = 3$$
,

$$\sqrt{2x + 3} - \sqrt{x + 1} = 1$$

$$\sqrt{2(3) + 3} - \sqrt{3 + 1} \stackrel{?}{=} 1$$

$$\sqrt{9} - \sqrt{4} \stackrel{?}{=} 1$$

$$3 - 2 \stackrel{?}{=} 1$$

$$1 = 1.$$

Therefore, x = 3 is also a solution to the radical equation.

(e)
$$x^{5/4} = 32$$

Solution:

$$x^{5/4} = 32$$

$$(\sqrt[4]{x})^5 = 32$$

$$\sqrt[4]{x} = \sqrt[5]{32}$$

$$\sqrt[4]{x} = 2$$

$$(\sqrt[4]{x})^4 = 2^4$$

$$x = 16$$

Therefore, x = 16 is a potential solution to the radical equation.

Checking
$$x = 16$$
,

$$x^{5/4} = 32$$

$$(\sqrt[4]{16})^5 = 32$$

$$(\sqrt[4]{16})^5 \stackrel{?}{=} 32$$

$$(2)^5 \stackrel{?}{=} 32$$

$$32 = 32.$$

Therefore, x = 16 is the solution to the radical equation.

(f)
$$(2x+3)^{2/3} = 9$$

Solution:

$$(2x+3)^{2/3} = 9$$

$$(\sqrt[3]{2x+3})^2 = 9$$

$$\sqrt[3]{2x+3} = \pm\sqrt{9}$$

$$\sqrt[3]{2x+3} = \pm 3$$

$$(\sqrt[3]{2x+3})^3 = (\pm 3)^3$$

$$2x+3 = \pm 27$$

$$2x+3 = \pm 27$$

$$2x = -3 \pm 27$$

$$x = \frac{-3 \pm 27}{2}$$

Therefore, $x = -\frac{30}{2} = -15$ and $x = \frac{24}{2} = 12$ are solutions to the radical equation.

Since we raised both sides to an odd power, the solutions are not extraneous.

(g)
$$(x-1)^{3/4} = -27$$

Solution:

$$(x-1)^{3/4} = -27$$

$$(\sqrt[4]{x-1})^3 = -27$$

$$\sqrt[4]{x-1} = \sqrt[3]{-27}$$

$$\sqrt[4]{x-1} = -3$$

$$(\sqrt[4]{x-1})^4 = (-3)^4$$

$$x-1 = 81$$

Therefore, x = 82 is a potential solution to the radical equation.

Checking x = 82,

$$\left(\sqrt[4]{x-1}\right)^3 = -27$$

$$\left(\sqrt[4]{82-1}\right)^3 \stackrel{?}{=} -27$$

$$\left(\sqrt[4]{81}\right)^3 \stackrel{?}{=} -27$$

$$(3)^3 \stackrel{?}{=} -27$$

$$27 \neq -27.$$

Therefore, x = 82 is an extraneous solution, there are no solutions to the equation.

Section 4.4 – Solving Nonlinear Inequalities

1. Solve the following inequalities.

(a)
$$x^2 > x + 12$$

Solution:

Creating a table and testing values around x = -3 and x = 4,

Interval	Test x	(x-4)(x+3)	< 0 or > 0?
<i>x</i> < −3	-4	(-8)(-1) = 8	greater
-3 < x < 4	0	(-4)(3) = -12	less
x > 4	5	(1)(8) = 8	greater

Therefore, the inequality is true over the interval $(-\infty, -3) \cup (4, \infty)$.

(b)
$$4x^2 + 1 \le 4x$$

Solution:

$$4x^{2} + 1 \le 4x$$

$$4x^{2} - 4x + 1 \le 0$$

$$(2x - 1)^{2} \le 0$$

Since squaring a number never produces a negative value and

$$2x - 1 = 0$$
$$2x = 1$$
$$x = \frac{1}{2},$$

the inequality is true only when x = 1/2.

(c)
$$2x - x^2 \ge |x - 1| - 1$$

Solution:

Using the piecewise definition of the absolute value,

$$2x - x^{2} \ge |x - 1| - 1$$

$$2x - x^{2} \ge \begin{cases} (x - 1) - 1, & x - 1 \ge 0 \\ -(x - 1) - 1, & x - 1 < 0 \end{cases}$$

$$2x - x^{2} \ge \begin{cases} x - 2, & x \ge 1 \\ -x, & x < 1 \end{cases}$$

$$0 \ge \begin{cases} x^{2} - x - 2, & x \ge 1 \\ x^{2} - 3x, & x < 1 \end{cases}$$

For $x \ge 1$,

$$0 \ge x^2 - x - 2$$

0 \ge (x - 2)(x + 1).

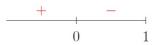
Since $x \ge 1$, creating a table and testing values around x = 2,

Interval	Test x	(x-2)(x+1)	< 0 or > 0?
1 < <i>x</i> < 2	1.5	(-0.5)(2.5) = -1.25	less
x > 2	3	(1)(4) = 4	greater

Therefore, this inequality is true over the interval [1, 2].

For x < 1,

$$0 \ge x^2 - 3x$$
$$0 \ge x(x - 3).$$



Since x < 1, creating a table and testing values around x = 0,

Interval	Test x	x(x-3)	< 0 or > 0?
<i>x</i> < 0	-1	(-1)(-4) = 4	greater
0 < x < 1	0.5	(0.5)(-2.5) = -1.25	less

This inequality is true over the interval [0, 1), therefore, the absolute value inequality is true over the interval $[0, 1) \cup [1, 2] = [0, 2]$.

(d)
$$-\frac{6x+6}{x^2-x-2} \le x+3$$

Solution:

If
$$x \neq -1$$
,

$$-\frac{6x+6}{x^2-x-2} \le x+3$$

$$-\frac{6(x+1)}{(x-2)(x+1)} \le x+3$$

$$-\frac{6}{x-2} \le x+3$$

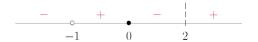
$$-\frac{6}{x-2} \le \frac{(x+3)(x-2)}{x-2}$$

$$-\frac{6}{x-2} \le \frac{(x+3)(x-2)}{x-2}$$

$$0 \le \frac{x^2 + x - 6}{x-2} + \frac{6}{x-2}$$

$$0 \le \frac{x^2 + x}{x-2}$$

$$0 \le \frac{x(x+1)}{x-2}$$



To determine the solution to the inequality $0 \le \frac{x(x+1)}{x-2}$, we must then test values around x = -1, x = 0, and x = 2,

Interval	Test x	x(x+1)/(x-2)	< 0 or > 0?
x < -1	-2	(-2)(-1)/(-4) = -0.5	less
-1 < x < 0	-0.5	(-0.5)(0.5)/(-2.5) = 0.1	greater
0 < x < 2	1	(1)(2)/(-1) = -2	less
x > 2	3	(3)(4)/(1) = 12	greater

Therefore, the inequality is true over the interval $(-1,0] \cup (2,\infty)$.

(e)
$$\sqrt[3]{x} \le x$$

Solution:

Since the cubic function is increasing,

$$\sqrt[3]{x} \le x$$

$$(\sqrt[3]{x})^3 \le x^3$$

$$x \le x^3$$

$$0 \le x^3 - x$$

$$0 \le x(x^2 - 1)$$

$$0 \le x(x - 1)(x + 1)$$

To determine the solution to the inequality $0 \le x(x-1)(x+1)$, we then test values around x=-1, x=0, and x=1,

Interval	Test x	x(x-1)(x+1)	< 0 or > 0?
x < -1	-2	(-2)(-3)(-1) = -6	less
-1 < x < 0	-0.5	(-0.5)(-1.5)(0.5) = 0.375	greater
0 < x < 1	0.5	(0.5)(-0.5)(1.5) = -0.375	less
x > 1	2	(2)(1)(3) = 6	greater

Therefore, the inequality is true over the interval $[-1,0] \cup [1,\infty)$.

(f)
$$2(x-2)^{-1/3} - \frac{2}{3}x(x-2)^{-4/3} \le 0$$

Solution:
$$2(x-2)^{-1/3} - \frac{2}{3}x(x-2)^{-4/3} \le 0$$

$$\frac{2}{(x-2)^{1/3}} - \frac{2x}{3(x-2)^{4/3}} \le 0$$

$$3(x-2) \qquad 2 \qquad 2x$$

$$\frac{3(x-2)}{3(x-2)} \cdot \frac{2}{(x-2)^{1/3}} - \frac{2x}{3(x-2)^{4/3}} \le 0$$

$$\frac{6x - 12}{3(x - 2)^{4/3}} - \frac{2x}{3(x - 2)^{4/3}} \le 0$$

$$\frac{6x-12}{3(x-2)^{4/3}} - \frac{2x}{3(x-2)^{4/3}} \le 0$$
$$4(x-3)$$

$$\frac{4(x-3)}{3\left(\sqrt[3]{x-2}\right)^4} \le 0$$

If $x \neq 2$, then

$$x - 3 \le 0$$
.

Therefore, the inequality is true when $x \le 3$ and $x \ne 2$, so over the interval

$$(-\infty,2) \cup (2,3].$$

Instead, factoring out
$$(x-2)^{-4/3}$$
,
$$2(x-2)^{-1/3} - \frac{2}{3}x(x-2)^{-4/3} \le 0$$

$$6(x-2)^{-1/3} - 2x(x-2)^{-4/3} \le 0$$

$$2(x-2)^{-4/3}[3(x-2)^1 - x] \le 0$$

$$2(x-2)^{-4/3}[2x-6] \le 0$$

$$\frac{4(x-3)}{(x-2)^{4/3}} \le 0.$$