
Math 308 - Spring 2025
Week-in-Review

Math 308: Week-in-Review 8 (6.3 - 6.5)

6.1-6.6 Laplace Transform

Review

• Definition of the Laplace transform

L{f} =

∫ ∞

0
e−stf(t) dt

• General strategy for solving differential equations with the Laplace transform

1. Laplace transform

2. Solve for Y (s)

3. Inverse transform

• Common Laplace transforms

f(t) F (s) defined for

1 1
s s > 0

eat 1
s−a s > a

tn(n = 1, 2, . . .) n!
sn+1 s > 0

sin(bt) b
s2+b2

s > 0

cos(bt) s
s2+b2

s > 0

eattn(n = 1, 2, . . .) n!
(s−a)n+1 s > a

eat sin(bt) b
(s−a)2+b2

s > a

eat cos(bt) s−a
(s−a)2+b2

s > a

uc(t)(c ≥ 0) e−cs

s s > 0
δ(t− c)(c ≥ 0) e−cs

• Shift theorems
L{uc(t)f(t− c)} = e−csF (s)

L{uc(t)f(t)} = e−csL{f(t+ c)}
L−1{e−csF (s)} = uc(t)f(t− c)

L−1{F (s− c)} = ectf(t)
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1 6.2: Solving ODEs with Laplace Transforms

Review

• Laplace transform of derivatives

• L{f ′} =

• L{f ′′} =

• L{f ′′′} =

• How to solve differential equations with the Laplace transform

– Laplace transform

– Solve for Y (s)

– Inverse transform
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1. Use the Laplace transform to solve the initial value problem

y′′ − 3y′ + 2y = 0, y(0) = −2, y′(0) = 1.
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2. Use the Laplace transform to solve the initial value problem

y′′ + 2y′ + 5y = 0, y(0) = 1, y′(0) = −1.
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3. Use the Laplace transform to solve the initial value problem

y′′ + 6y′ + 9y = 3e−t, y(0) = 1, y′(0) = 0.
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4. Use the Laplace transform to solve the initial value problem

y′′′ − y′ = 0, y(0) = 1, y′(0) = 2, y′′(0) = −1.
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2 6.3: Step Functions

Review

• The unit step function uc(t) is defined by

• It can be used to write discontinuous functions into a single equation.

• The Laplace transform of uc(t) is

• Laplace transforms of shifts

• Inverse Laplace transform of shifts
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5. Convert the following function to a piecewise function. Also, graph the function. Compute its
Laplace transform.

f(t) = u3(t)− 2u5(t)

6. Convert the following function to a piecewise function. Compute its Laplace transform.

f(t) = t− cos(t− 2)u2(t)− tu3(t)
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7. Convert the following piecewise function into a form that involves step functions.

g(t) =


0, t < 2

3, 2 ≤ t < 5

sin(3t), t ≥ 5

8. Convert the following piecewise function into a form that involves step functions. Compute its
Laplace transform.

g(t) =

{
3t, t < 5

e3t, t ≥ 5
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9. Solve the initial value problem.

f ′′ + 4f = u3(t), f(0) = 0, f ′(0) = 0.
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10. Solve the initial value problem.

w′′ + 2w′ =

{
3, t < 5

0, t ≥ 5
, w(0) = 0, w′(0) = 0.
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11. Consider a spring and mass system with a 5 kg mass hanging on a spring. When the mass is hung
on the spring, the spring extends 50 cm. The mass experiences a damping force of 8 N when the
mass is moving 2 m/s. The mass starts from equilibrium at rest, but there is an external force
cos(t) that lasts for the first 3π seconds. Write down the initial value problem that describes this
situation.
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3 6.6: Delta Functions

Review

• The Dirac delta function δ(t− c) is defined by

• It can be used to model instantaneous impulses or point sources in differential equations.

• The Laplace transform of δ(t− c) is

• Laplace transforms involving delta functions

• Inverse Laplace transform involving delta functions
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12. Find the Laplace transform of the following function:

f(t) = t2δ(t− 3) + etδ(t− 5).
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13. Solve the initial value problem:

y′′ + 2y′ + y = δ(t− 3), y(0) = 1, y′(0) = −1.
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14. A 2 kg mass is suspended from a spring and damper. When the mass is hung at rest, it stretches
the spring by 2 meters. When the mass moves at 1 m/s, the damper exerts a resistive force of 4 N.
At t = 2 seconds, the system is struck with a hammer, delivering an instantaneous impulse force of
magnitude 3N. The mass starts motion from equilibrium with an initial upward velocity of 0.5 m/s.

(a) Determine the spring constant k and damping coefficient c.

(b) Write the governing differential equation for the displacement u(t).

(c) Solve for u(t) and describe the motion of the system.

(Use g = 10m/s2.)
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