

2=2

(b)
$$f(x,y) = \frac{\sqrt{4 - x^2 - y^2}}{x + y}$$
.

Numerator: $4 - x^2 - y^2 \ge 0$ $\Rightarrow x^2 + y^2 \le 4$

Denominator: x+y ≠ 0 x ≠ - y

Z

TEXAS A&M UNIVERSITY Math Learning Center

Example 2 (14.1). Draw the level curves z = k when k = 1, 2, 3 of the function

$$z = f(x, y) = \ln(x^{2} + y^{2} - 9),$$

and sketch its graph.

$$z = 1 \Rightarrow \ln(x^{2} + y^{2} - 9) = 1$$

$$x^{2} + y^{2} = 9 + e, \text{ a circle centered at the origin}$$

with radius $\sqrt{9+e}$. This means the height 4 the function
at any point on the circle $x^{2} + y^{2} = 9 + e$ is 1.

$$z = 2 \Rightarrow \ln(x^{2} + y^{2} - 9) = 2$$

i.e. $x^{2} + y^{2} = 9 + e^{2}$

$$z = 3 \Rightarrow \ln(x^{2} + y^{2} - 9) = 3$$

i.e. $x^{2} + y^{2} = 9 + e^{3}$

$$x = \ln(x^{2} + y^{2} - 9) = 3$$

i.e. $x^{2} + y^{2} = 9 + e^{3}$

$$x = \ln(x^{2} + y^{2} - 9) = 3$$

i.e. $x^{2} + y^{2} = 9 + e^{3}$

$$x = \ln(x^{2} + y^{2} - 9) = 3$$

i.e. $x^{2} + y^{2} = 9 + e^{3}$

$$x = \ln(x^{2} + y^{2} - 9) = 3$$

i.e. $x^{2} + y^{2} = 9 + e^{3}$

$$x = \ln(x^{2} + y^{2} - 9) = 3$$

i.e. $x^{2} + y^{2} = 9 + e^{3}$

$$x = \ln(x^{2} + y^{2} - 9) = 3$$

i.e. $x^{2} + y^{2} = 9 + e^{3}$

$$x^{2} + y^{3} = 9$$

Example 4 (14.3). Find the first partial derivative of the function.

(a)
$$f(x,y) = \frac{\ln x}{(x+y)^2}$$

$$f_{x}(x,y) = \frac{1}{x} (x+y)^{2} - 2(\ln x)(x+y)$$

$$(2+y)^{4}$$

$$f_y(x, y) = -2(\ln x)(x+y)^{-3}$$

FTC 1:
$$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt = f(x) \right)^{2}$$
 is a constant.

$$(b) W(p,q) = \int_{p}^{q} \sqrt{1+t^{5}} dt$$

$$\frac{d}{dp} W(P,q) = -\frac{d}{dp} \left(\int_{q}^{p} \sqrt{1+t^{5}} dt \right) = -\sqrt{1+p^{5}}$$

$$\frac{d}{dq}W(P,q) = \frac{d}{dq}\left(\int_{P}^{q}\sqrt{1+t^{5}} dt\right) = \sqrt{1+q^{5}}$$

(a)
$$F(r, s, t) = r \tan(s + 3t) + 2t$$
.
 $F_r = \tan(s + 3t)$
 $F_s = r \sec^2(s + 3t)$
 $F_t = r(\sec^2(s + 3t))(3) + 2$
 $= 3r \sec^2(s + 3t) + 2$

Example 5 (14.3). Suppose $f(x, y) = \sqrt{9 - x^2 - 9y^2}$. Find $f_x(2, 0)$ and $f_y(2, 0)$ and interpret these values as slopes.

$$f_{x} = \frac{-2\pi}{2\sqrt{9-x^{2}-9y^{2}}} = \frac{-\pi}{\sqrt{9-x^{2}-9y^{2}}}$$

$$z = \sqrt{9-x^{2}-9y^{2}}$$

$$z^{2} + \frac{9y^{2}+z^{2}}{9} = 9$$

$$\frac{x^{2}}{9} + \frac{9y^{2}+z^{2}}{9} = 9$$

$$\frac{y^{2}}{9} + \frac{y^{2}+z^{2}}{9} = 9$$

$$\frac{y^{2}}{9} + \frac{y^{2}+z^{2}}{9} = 9$$

$$\frac{y^{2}}{9} + \frac{y^{2}+z^{2}}{9} = 9$$

$$\frac{x^{2}+y^{2}+z^{2}}{9} = 9$$

$$\frac{x^{2}+y^{2}+z^{2}}{9} = 9$$

$$\frac{x^{2}+y^{2}+z^{2}}{9} = 9$$

$$\frac{y^{2}}{9} + \frac{y^{2}+z^{2}}{9} + \frac{y^{2}+z^{2}}{9} = 9$$

$$\frac{y^{2}}{9} + \frac{y^{2$$

Example 6 (14.3/14.4). Suppose $f(x, y) = e^{xy} - 3x^2y$.

- (a) Find $f_x(0, -3)$ and $f_y(0, -3)$.
- (b) Is f differentiable at (0, -3)? Explain.
- (c) Find all the second order partial derivatives. Is f_{xy} equal to f_{yx} ? Explain why.

 $f_{\pi} = y e^{xy} - 6xy , \quad f_{y} = x e^{xy} - 3x^{2}$ (9) $f_{x}(0, -3) = -3$ $f_{y}(0, -3) = 0$ (b) Since $f_{\pi}(x, y) \text{ and } f_{y}(x, y) \text{ are continuous at } (0, -3),$ f is differentiable at (0, -3).In fact, f is differentiable everywhere.(c) $f_{\pi x} = y^{2} e^{xy} - 6y \qquad f_{yy} = x^{2} e^{xy}$ $f_{\pi y} = (f_{\pi})_{y} = e^{xy} + xy e^{xy} - 6x$ $f_{y x} = (f_{y})_{x} = e^{xy} + xy e^{xy} - 6x$

Yes, fry = fyr as the mixed partial derivatives are continuous. (Clairauts Theorem).

Tangent Planes Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

or

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

The linear function

$$L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

is called the linearization of f at (a, b), and the approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the *linear approximation* or the tangent plane approximation of f at (a, b).

Example 7 (14.4). Find an equation of the tangent plane at the point P(4, 1, 2) on the surface $z = \ln(x - 3y) + 2y$.

$$f_{\pi} = \frac{1}{x - 3y} \qquad f_{\pi}(4, 1) = 1$$

$$f_{y} = \frac{-3}{x - 3y} + 2 \Rightarrow f_{y}(4, 1) = -1$$
An equation of the plane is
$$z - 2 = 1(z - 4) + (-1)(y - 1)$$

$$z - 2 = z - y - 3$$

$$[-x + y + z = -1]$$

Example 8 (14.4). Consider the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}.$$

- (a) Find the differential of the function.
- (b) Find the linearization of the function at the point (2, 1, 2).
- (c) Use the differential or linearization to estimate $\sqrt{1.9^2 + 1.1^2 + 2.01^2}$.

(a)
$$dw = f_x dx + f_y dy + f_z dz$$

$$= \frac{2}{\sqrt{x^2 + y^2 + z^2}} dx + \frac{y}{\sqrt{x^2 + y^2 + z^2}} dy + \frac{z}{\sqrt{x^2 + y^2 + z^2}} dz$$
(b) $f_x(2, 1, 2) = \frac{2}{3}$, $f_y(2, 1, 2) = \frac{1}{3}$, $f_z(2, 1, 2) = \frac{2}{3}$
 $f(2, 1, 2) = 3$
 $L(7, Y, z) = f(a, b, c) + f_x(a, b, c)(x - a) + f_y(a, b, c)(y - b) + f_z(a, b, c)(z - c)$
 $= 3 + \frac{2}{3}(x - 2) + \frac{1}{3}(y - 1) + \frac{2}{3}(z - 2)$
 $= \frac{1}{3} \left[2x + y + 2z \right]$

$$(c) \sqrt{1.9^{2} + 1.1^{2} + 2.01^{2}} = f(1.9, 1.1, 2.01) \simeq L(1.9, 1.1, 2.01)$$

$$= \frac{1}{3} \left[\frac{3.8 + 1.1 + 9.027}{2} \right]$$

$$= \frac{8.92}{2} = 2.973$$

Example 9 (14.4). If $z = x^2 + 2y^2 - x$ and (x, y) changes from (2,3) to (1.9, 3.01), compare the values Δz and dz.

 $dz = f_{x} dx + f_{y} dy = (2x-1) dx + 4y dy .$ Given that (x, y) = (2, 3), $(x + \Delta x, y + Ay) = (1.9, 3.01)$ So, $dx = \Delta x = -0.1$, $dy = \Delta y = 0.01$ dz = (4-1)(-0.1) + 4(3)(0.01) = -0.30 + 0.12 = -0.18 $\Delta z = f(1.9, 3.01) - f(2, 3)$ $= [(1.9)^{2} + 2(3.01)^{2} - 1.9] - [2^{2} + 2(3^{2}) - 2]$ = 19.83 - 20 = -0.17 $dz = \Delta z$

The Chain Rule Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

Example 10 (14.5). The length l, width w, and height h of a rectangular box are changing with respect to time t. At a certain instance the dimensions are l = 5 cm, w = 4 cm and h = 10 cm, and length and width are increasing at a rate of 4 cm/s while the height is decreasing at a rate of 3 cm/s. At that instant find the rate at which the volume of the box is changing.

$$V = lwh , l = l(t), w = w(t), h = h(t)$$

$$\frac{dv}{dt} = \frac{\partial V}{\partial t} \cdot \frac{\partial l}{\partial t} + \frac{\partial V}{\partial w} \cdot \frac{\partial w}{\partial t} + \frac{\partial V}{\partial h} \cdot \frac{\partial h}{\partial t}$$

$$= wh \frac{\partial l}{\partial t} + lh \frac{\partial w}{\partial t} + lw \frac{\partial h}{\partial t}$$
Given that $l = 5, w = 4, h = 10, dl = dw = 4, dh = -3$

$$\frac{dV}{dt} = 40(4) + 50(4) + 20(-3)$$

$$= 160 + 200 - 60$$

$$= 300 \text{ cm}^{3}/s$$

Example 11 (14.5). If $z = \tan^{-1}(x^2 + y^2)$, $x = s \ln t$, $y = te^s$, find $\frac{\partial z}{\partial s}$ when s = 2 and t = 1.

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$$

$$= \frac{2\chi}{1 + (x^2 + y^2)^2} \cdot \ln t + \frac{2y}{1 + (x^2 + y^2)^2} \cdot te^s$$

$$s = 2, t = 1 \implies \chi = 0, y = e^2$$

$$\frac{\partial z}{\partial s} \Big|_{(s,t) = (2,1)} = 0 + \frac{2e^2}{1 + (o + e^4)^2} \cdot e^2 = \frac{2e^7}{1 + e^8}$$

Example 12 (14.5). Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^3 + y^3 + z^3 = 3 - xyz$.

Define $F(x, y, z) = x^3 + y^3 + z^3 + xyz - 3$. Then the level curface F(x, y, z) = 0 produces the given surface. $F_x = 3x^2 + yz$ $F_y = 3y^2 + xz$ $F_z = 3z^2 + xy$ $\frac{2z}{2x} = -\frac{F_x}{F_z} = -\frac{(3x^2 + yz)}{3z^2 + xy}$ $\frac{2z}{2y} = -\frac{F_y}{F_z} = -\frac{(3y^2 + xz)}{3z^2 + xy}$