

Example 1 (16.4). Use the Green's Theorem to compute the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = (x^2y^2 + x^2\sin x)\mathbf{i} + (2x^3y + e^y)\mathbf{j}$ and C is the boundary of the region bounded by the curves $y = x^2$, x = 2, and y = 0.

Example 2 (16.4). Use the Green's Theorem to compute the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = \langle e^{3x} - 4y, 6x + e^{2y} \rangle$ and C is the boundary of the region that has area 4 with counterclockwise orientation.

Example 3 (16.4). Use the Green's Theorem to compute $\int_C (3xy^2 - 2y^3) dx + (2x^3 + 3x^2y) dy$, where C is the circle $x^2 + y^2 = 9$ with positive orientation.

Example 4 (16.4). Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle 2xy^2, 3x^2y - 5 \rangle$ and C is the triangle from (0,0) to (-2,2) to (1,2) to (0,0).

Example 5 (16.5). *Find the curl and divergence of*

$$\mathbf{F}(x, y, z) = xyz\,\mathbf{i} + (x^2 + yz)\,\mathbf{j} + xz\,\mathbf{k}.$$

Is F conservative? Explain.

Example 6 (16.5). Let f be a scalar function and \mathbf{F} and \mathbf{G} are vector fields on \mathbb{R}^3 . State whether each expression is meaningful. If so, state whether it;s a vector field or a scalar field.

(a) $\nabla f \times (\mathbf{F} + \mathbf{G})$

(b) $\nabla f \cdot curl \mathbf{F}$

(c) $\nabla f \times div \mathbf{F}$

- (d) $(curl \mathbf{F} \times \mathbf{G}) \cdot \nabla f$
- (e) $curl(\mathbf{F} \cdot \mathbf{G})$

(f) $div(curl F \times \nabla f)$

Example 7 (16.5). Consider the vector field $\mathbf{F}(x, y, z) = \langle 2xy + 3, x^2 + z \cos y, \sin y \rangle$.

(a) Determine whether or not \mathbf{F} is conservative. If it is, find a potential function f. That is, find a function f such that $\nabla f = \mathbf{F}$.

(b) Compute
$$\int_{C} \mathbf{F} \cdot d\mathbf{r}$$
, where $C : r(t) = \langle t, 2t, 1+t^2 \rangle; \ 0 \le t \le \pi$.

Example 8 (16.6). Find a parametric representation for the surface.

- (a) The part of the plane 2x + z = 8 that lies within the cylinder $x^2 + y^2 = 9$.
- (b) The part of the cylinder $x^2 + y^2 = 9$ within the planes z = 0 and z = 3.
- (c) The part of the cylinder $y^2 + z^2 = 9$ within the planes x = 0 and x = 3.
- (d) The part of the paraboloid $z = 6 2x^2 2y^2$ above the plane z = 4.

Example 9 (16.6). Find the surface area of the part of the plane 2x + 3y + z = 8 that lies within the cylinder $x^2 + y^2 = 4$.

Example 10 (16.6). Find the surface area of S, where S is the part of the paraboloid $y = x^2 + z^2$ that lies within the cylinder $x^2 + z^2 = 4$.

Example 11 (16.6). Consider that S is the part of the sphere $x^2 + y^2 + z^2 = 36$ that lies within the planes z = 0 and $z = 3\sqrt{3}$.

- (a) Find a parametric representation for the surface S.
- (b) Find the surface area of the surface S.

Example 12 (16.6). Find the area of the part of the surface $z = 1 + 2x^2 + 3y$ that lies above the region bounded the triangle with vertices (0,0), (2,0), and (2,4).