2024 Fall Math 140 Week-In-Review

Week 11: Sections 5.7 and 5.8

Some Key Words and Terms: Function Transformations, Function Arithmetic, Function Composition, One-to-One Functions, Exponential and Logarithmic Form, Properties of Logarithms, Logarithmic Function, Solving Exponential and Logarithmic Equations, Exponential Models.

Function Transformations:

Parent Function	Horizontal Shift	Vertical Shift	Reflection across x-axis	Vertical Expansion	Vertical Compression	
f(x)	f(x+a)	f(x) + a	-f(x)	af(x)	$\frac{1}{a}f(x)$	
x ²	(x ta) ² -a, right +a, left	x²ta -a, down +a, up	$-\times^2 \rightarrow -(\times^2)$	7 -	13 x2 Vertcal compress	sion
x ³	$(x \pm a)^3$	x3±a	$-\chi^3 \rightarrow -(\chi^3)$	3 _× ³	13×3	
\sqrt{x}	√x±a'	√x ±a	-J×	31×	31×	
⁸ √ <i>x</i>	₹x±a	3x ± a	-3×	33×	±3√×	
x	1x±al	x ±a	- x	3/xl	キ(×)	
(bx)	(xta)	bxta	$-\rho_{\times} \rightarrow -(\rho_{\times})$	3.bx quirally combine	13 X	
$\left(\frac{1}{b}\right)^x$	$\binom{1}{b}^{(x \pm a)}$	$(b)^{x} \pm a$	-(P)x	3.(p)x	3. (1)x	

exponential functions, the "inside" is the power

Function Arithmetic: add/ subtract/multiply/divide functions A don't over think this & don't mix it up w/ function composition $(f+g)(x) \longrightarrow add f(x) & g(x) & simplify$ (f-g)(x) -> subtract f(x) & g(x) (order does matter) (fg)(x) -> multiply f(x)·g(x) (f)(x) -> divide f(x) & g(x) at a (g(x)) we could now have a new restriction Function Composition: plug functions in to other functions (f.g)(x) -> f(g(x)) -> plug-in g(x) for all the x in f(x) & simplify

(q.f)(x) -> a (f(x)) -> plug-in f(x) for all the x in g(x)

Generally 3 ways: (1) given f(x) & g(x), compute the composition

(2) given a table of value, compute specific value

(3) given graphs, compute a specific value De-compose: give you the inside of flg(x) & the result, One-to-One Functions: Byn & Functions where each x-value has at most one y-value AND each y-value has at most one x-value Given a graph of a function, is it one-to-one? we apply the Horizontal Line Test

if it passes -> it is one-to-one if it fails -> not one-to-one Exponential and Logarithmic Form: · Exponential has variables in powers/exponents · Logarithmic has "log()" or "lh()"
a logarithm must apply to something Converting: It the base always kinda like a Kyhere must be something insid something inside $lg_b(a) = \times$ a'a' es a

Week 11 - 5.7 and 5.8 Page 3

Properties of Logarithms: Unfortunately, just comes down to memorization

Examples:

1. For the given functions, state the parent function. Then, state the transformations performed on the parent function to obtain the given function.

(a) $q(x) = 5\sqrt[3]{x+1} + 2$

porent function: 31x = f(x)

1) shift left/right

(2/3) vertical expansion/compression reflection across x-axis (4) shift up/down

· shift left one unit (x+1 inside 3/)

· vertical expansion by factor of 5 (5 multiplied in front)

· shift up two units (+2 at end)

(b) $h(x) = -\frac{2}{3} \cdot \left(\frac{1}{7}\right)^{x-4}$

parent function: f(x)= (1)

· shift right four units (x-4 in power)

· reflection across x-axis (ngotive michent)

vertical compression by a factor reiprocal of $\frac{3}{2}$ (coefficient of $\frac{2}{3}$)

2. For the parent function $f(x) = x^2$, write a function k(x) which is f(x) with the following transformations:

(2/3) • vertically compress by a factor of 3

shift left 2 units

2/3) reflect across the x-axis

3. For the given functions, compute the indicated value, if it exists...

$$f(x) = 5x - x^{2}$$

$$g(x) = \frac{3}{x} - 7$$
(a) $(f+g)(2) = f(x) + g(x)$

$$= 6 + (-1/2)$$

$$= \frac{2}{2} - \frac{1}{2} = \boxed{2}$$

(a)
$$(f+g)(2) = f(2) + g(2)$$

 $= G + (-1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$
 $= (2 - 1/2) = (1/2)$

 $h(x) = 2\sqrt{10 - x}$

(b)
$$\left(\frac{f}{h}\right)$$
 (-6) = $\frac{f(-\epsilon)}{h(-\epsilon)}$
= $\frac{-66}{8}$ = $\left[\frac{-33}{4}\right]$

$$f(-6) = \frac{f(-6)}{h(-6)}$$

$$f(-6) = 5(-6) - (-6)^{2}$$

$$= -30 - 36 = -66$$

$$= -66 - 33 - 36 = -66$$

$$h(-6) = 2\sqrt{6 - (-6)} = 2\sqrt{6}$$

$$= 8$$

(c)
$$(g \circ f)(5) \rightarrow g(f(5)) \rightarrow f(5) = 5(5) - (5)^2 = 25 - 25 = 0$$

$$g(0) = \frac{3}{0} - 7$$

$$g(0) = \frac{3}{0} - 7$$

$$g(0) = \frac{3}{0} - 7$$

(d)
$$(h \circ f)(2) \rightarrow h(f(2)) \rightarrow f(2) = 6$$

$$h(6) = 250 - 6 = 254 = 4$$

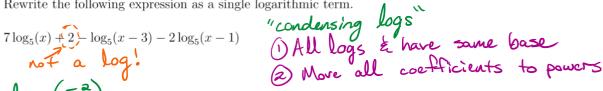
(a)
$$\sqrt[3]{3x} = 11$$

(b)
$$\left(\frac{5}{2}\right)^{\frac{1}{2}} = x$$

5. Convert the following from a logarithmic equation to an exponential equation.

(a)
$$\log_{9}(x+2) = -4$$

$$9^{-4} = x + 2$$

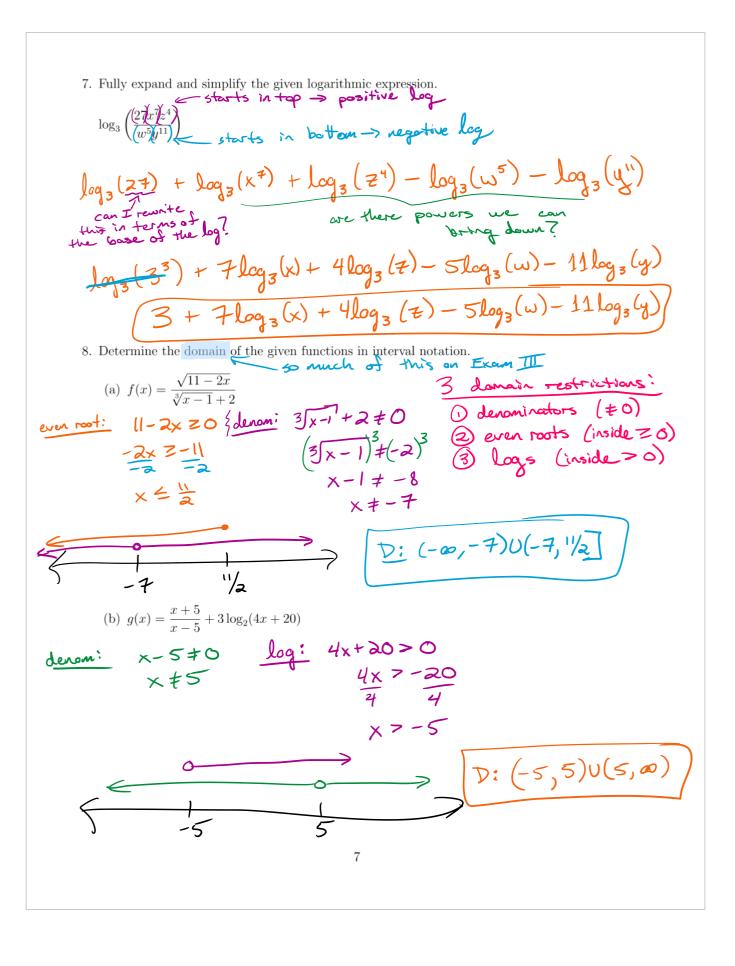

& ln(x)=loge(x)*

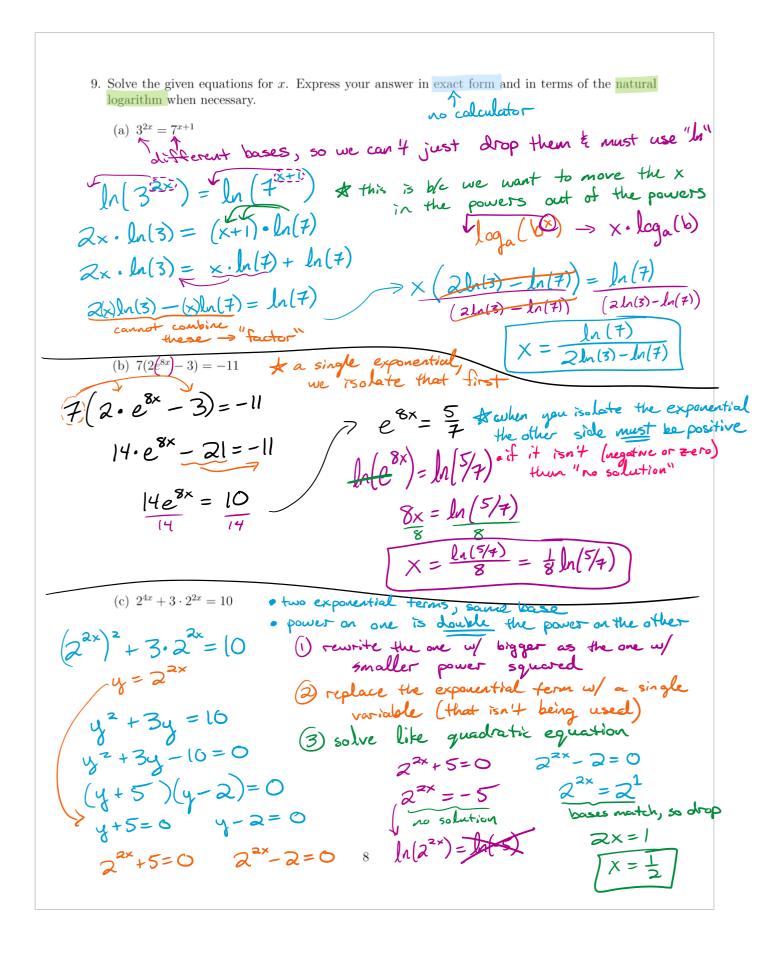
(b)
$$\ln(5) = x - 1$$

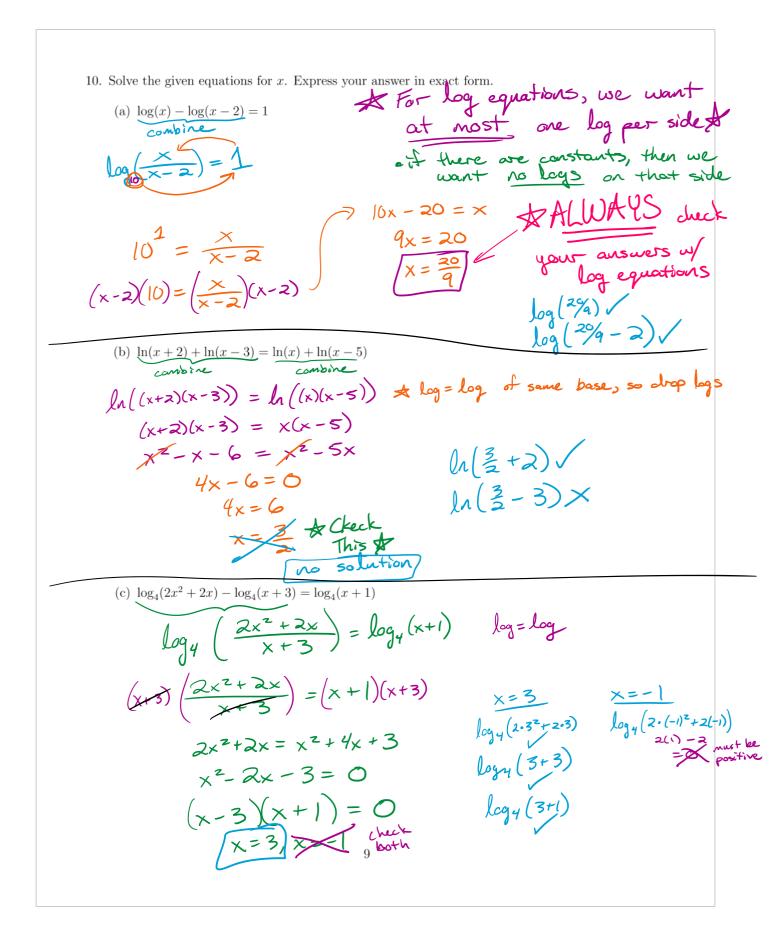
$$\log(5) = x - 1$$

6. Rewrite the following expression as a single logarithmic term.

$$7\log_5(x) + 2 - \log_5(x-3) - 2\log_5(x-1)$$




2 -> log_ (52) Flogs(x) + logs(25) - logs(x-3) - 2logs(x-1) $7\log_{5}(x) + \log_{5}(25) - \log_{5}(x-3) - 2\log_{5}(x-1)$ $\log_{5}(x^{7}) + \log_{5}(25) - \log_{5}(x-3) - \log_{5}(x-1)^{2}$ $\log_{6}(x) + \log_{6}(y) \rightarrow \log_{6}(x,y)$


· if it is inside a positive log -> multiplied on top · if it is inside a regative log -> multiplied on bottom

$$\log_{5}\left(\frac{x^{7} \cdot 25}{(x-3)\cdot(x-1)^{2}}\right) \rightarrow \log_{5}\left(\frac{25x^{7}}{(x-3)(x-1)^{2}}\right)$$

$$\log_5\left(\frac{25\times^+}{(x-3)(x-1)^2}\right)$$

11. How much money would you need to deposit in a savings account that earns 4.5% annual interest compounded monthly if after 8 years, you want there to be \$30,000 in the account?

$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$

$$30000 = P.(1 + \frac{0.045}{12})^{12(8)}$$

$$A = 30,000$$
 $P = 7$
 $C = .045$
 $M = 12$
 $C = 8$
 $C = 8$
 $C = 30,000$
 $C = P.(1 + 0.045)$
 $C = 12$
 $C = 0.045$
 C

12. A savings account grows from an initial investment of \$4,500 to \$6,800 in 4 years. Calculate the annual interest rate for the savings account if the interest is compounded continuously. Express your answer in exact form then express your answer as a decimal rounded to 3 decimal places.

Must memorize: $A = Pe^{-t}$ A = 6800 P = 4500 C = 7 C = 8 C = 8 C = 8 C = 8 C = 8 C = 8 C = 8 C = 8 C = 8 C = 8 C = 8

$$l_{\Lambda}\binom{68}{45} = l_{\Lambda}\binom{47}{45}$$

$$-=\frac{\ln(\frac{68}{45})}{4}\approx 0.103$$

 $\Gamma = \frac{\ln(\frac{68}{45})}{4} \approx 0.103$ (if they asked for a %, our answer would be 10.3%)