Example 1 (16.4). Use the Green's Theorem to compute the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = (x^2y^2 + x^2\sin x)\mathbf{i} + (2x^3y + e^y)\mathbf{j}$ and C is the boundary of the region bounded by the curves $y = x^2$, x = 2, and y = 0.

Example 2 (16.4). Use the Green's Theorem to compute the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = \langle e^{3x} - 4y, 6x + e^{2y} \rangle$ and C is the boundary of the region that has area 4 with counterclockwise orientation.

$$P = e^{3x} - 4y \implies Py = -4$$

$$A = 6x + e^{2y} \implies B_x = 6$$

$$\oint_C F. dy = \iint_D [6 - (-4)] dA, where D is the region bounded
D by C.
$$= 10 \iint_D dA = 10 \ A(D) = 10 \cdot 4 = 40$$$$

Example 3 (16.4). Use the Green's Theorem to compute $\int_C (3xy^2 - 2y^3) dx + (2x^3 + 3x^2y) dy$, where C is the circle $x^2 + y^2 = 9$ with positive orientation.

$$\oint_{C} (3x^{2}y - 2y^{3}) dx + (2x^{3} + 3x^{2}y) dy \stackrel{Green's}{=} \iint_{D} [6x^{2} + 6y^{2} - (6x^{4} - 6y^{2})] dx$$

$$where D: x^{2} + y^{2} \neq 9$$

$$= 6 \iint_{O} (x^{2} + y^{2}) dA \qquad i \cdot e \cdot 0 \neq r \neq 3, 0 \neq 0 \neq 2\pi$$

$$= 6 \int_{0}^{2\pi} \int_{0}^{3} r^{2} \cdot r dr d0$$

$$= 6 (\int_{0}^{2\pi} do) (\int_{0}^{3} r^{3} dr) = 6 \cdot 2\pi \cdot \frac{r^{4}}{4} \int_{0}^{3}$$

$$= 243\pi$$

Example 4 (16.4). Compute $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle 2xy^2, 3x^2y - 5 \rangle$ and C is the triangle from (0,0) to (-2,2) to (1,2) to (0,0).

Example 5 (16.5). *Find the curl and divergence of*

$$F(x, y, z) = xyz\mathbf{i} + (x^{2} + yz)\mathbf{j} + xz\mathbf{k}.$$

Is F conservative? Explain.

$$dIV F = P_{x} + B_{y} + R_{z} = yz + z + z, \quad a \text{ scalar function.}$$

$$Curl F = \nabla \times F = \begin{vmatrix} c & j & k \\ \partial_{x} & \partial_{y} & \partial_{z} \\ \partial_{x} & 2y & \partial_{z} \\ xyz & x^{2} + yz & zz \end{vmatrix} = \langle -y_{1} - (z - xy)_{1}, 2x - zz \rangle$$
Since F is defined everywhere on R^{3} (which is simply connected)
and $curl F \neq \vec{o}$, F is not conservative.

Example 6 (16.5). Let f be a scalar function and \mathbf{F} and \mathbf{G} are vector fields on \mathbb{R}^3 . State whether each expression is meaningful. If so, state whether it;s a vector field or a scalar field.

Example 7 (16.5). Consider the vector field $\mathbf{F}(x, y, z) = \langle 2xy + 3, x^2 + z \cos y, \sin y \rangle$.

(a) Determine whether or not \mathbf{F} is conservative. If it is, find a potential function f. That is, find a function f such that $\nabla f = \mathbf{F}$.

 $\begin{array}{c|c} Curl F = \left[\begin{array}{c} i & j & k \\ \partial_n & \partial_y & \partial_z \end{array} \right] = 0i + 0j + 0k = \overrightarrow{o} \\ \hline 2\pi y + 3 & n + z \\ \pi y & sin y \end{array}$ since F is defined everywhere on R³ and curl F=0, it A CONServative. We want f(x, y, z) such that $\nabla f = F$. i.e. $f_x = 2xy + 3$ - () $f_y = \chi^2 + z c \alpha y - 0$ $f_z = sin y - 3$ Let's integrate () wir.t y; $f(x,y,z) = (x^2 + z \cos y dy)$ $\Rightarrow f(x,y,z) = x^{2}y + z \sin y + g(x,z) - \Phi$ 2x9+3 = $f_{x} \stackrel{\oplus}{=} 2xy + o + g_{x}(x,z) \Rightarrow g_{x}(x,z) = 3$ $= 3 \int g_{\chi}(\chi, z) d\chi = \int 3 dn = 3\chi + h(z) \quad \text{Trial and error } h(z) = 0$ So, $f(n, y, z) = x^2 p + z sing + 3x$ is a potential function of F. (b) Compute $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where $C: r(t) = \langle t, 2t, 1+t^2 \rangle; 0 \le t \le \pi$. $V(0) \equiv (0, 0, 1) \longrightarrow initial point$ VCTT) = (IT, 2IT, 1+IT²) ~ terminal point. SF.dr = SVf.dr = f(terminal point) - f(initial point) $= f(\pi, 2\pi, 1+\pi^2) - f(\sigma, 0, 1)$ $= (\pi^2 \cdot (2\pi) + 0 + 3\pi) - 0$ $= 2\pi 3 + 3\pi$

Example 8 (16.6). Find a parametric representation for the surface. (a) The part of the plane 2x + z = 8 that lies within the cylinder $x^2 + y^2 = 9$. (b) The part of the cylinder $x^2 + y^2 = 9$ within the planes z = 0 and z = 3. (c) The part of the cylinder $y^2 + z^2 = 9$ within the planes x = 0 and x = 3. (d) The part of the paraboloid $z = 6 - 2x^2 - 2y^2$ above the plane z = 4. (a) $2x + z = 8 \implies z = f(x, y) = 8 - 2\chi$ r(x, y) = xi + yj + f(x, y) K = xi + yj + (8-2x) Kover D: $x^2 + y^2 \leq 9$.) Further, if we use polar coordinates with $x = v \cos \theta, y = v \sin \theta, \quad 0 \le v \le 3, \quad 0 \le \theta \le 2\pi$ $\forall r(v, v) = \langle v cosv, v sinv, S-2v cosv \rangle^{2}, , ,$ (b) $x^2 + y^2 = 9 \implies x = 3 \operatorname{cot} v, y = \operatorname{ssin} v, z = \vartheta$ $r(v, \theta) = \langle 3cosv, \exists sinv, \theta \rangle; o \in v \in \mathbb{Z}I, o \in \theta \in \mathbb{Z}.$ (c) $y^2 + z^2 = 9 \Rightarrow y = 3 \cos \theta, z = 3 \sin \theta, 0 \le \theta \le 2\pi$ x = U, $0 \leq U \leq 3$. $r(v, v) = \langle v, 3\cos v, 3\sin v \rangle ; 0 \leq v \leq 3, 0 \leq v \leq 2\pi.$ (d) The intersection of z = 4 and $z = 6 - 2x^2 - 2y^2$ is $x^2 + y^2 = 1$. The projection of the surface onto xy-plane in x2+y2 = 1. $Y(x,y) = xi + yj + (6 - 2x^2 - 2y^2)K'$; D: $x^2 + y^2 \leq 1$. Using polor coordinates: x= Ucoso, y=Usino, o=UEI, 0=0=21T $\gamma(\mathbf{v}, \mathbf{\varphi}) = \langle \mathbf{v} \, \mathbf{\varphi} \, \mathbf{\varphi}, \, \mathbf{v} \, \mathbf{\varphi} \, \mathbf{\varphi}, \, \mathbf{\varphi} \, \mathbf$

Example 9 (16.6). Find the surface area of the part of the plane 2x + 3y + z = 8 that lies within the cylinder $x^2 + y^2 = 4$.

 $2\chi + 3y + z = 8 \implies z = g(x, y) = 8 - 2x - 3y$ $r(x, y) = \langle x, y, 8 - 2x - 3y \rangle ; D = 2(x, y) : 2^{2} + y^{2} \le 4$ $r_{n} \times r_{y} = \begin{vmatrix} i & j & k \\ l & 0 & -2 \\ 0 & l & -3 \end{vmatrix} = \langle 2, 3, l \rangle .$ $Ir_{x} \times r_{y} = \sqrt{l + 4 + 9} = \sqrt{l4}$

In fact, if the surface is given by
$$z = g(x, y)$$
, then
 $r_{n} \times r_{y} = \langle -g_{x}, -g_{y}, 1 \rangle$ and

$$|\delta_{\chi} \times r_{y}| = \sqrt{1 + g_{\chi}^{2} + g_{y}^{2}}$$

$$A(S) = \iint |r_{\alpha} \times r_{y}| dA = \iint \sqrt{14} dA$$

$$\mathcal{D}$$

$$= \sqrt{14} \iint dA = \sqrt{14} \cdot A(D)$$
$$= \sqrt{14} \cdot (T \cdot 2^2)$$
$$= 4\sqrt{14} T$$

Example $y = x^2 + y$	z^2 that lies within t	the surface area $he \ culinder \ x^2 + z$	of S, where S is $t^2 = 4$.	the part of the parabo	loid
$\Upsilon(\mathbf{X},\mathbf{Z}) =$	$xi + (x^2 +$	$z^2)j+z$	K,	$\int_{-\infty}^{\infty}$	
	\mathcal{D} ; α^2 +	$z^2 \leq 4$			·
$r_{a} \times r_{z} =$	i j	K	_ (9
	1 22	0	L m		
	0 9 2)	T. Part i		
= <	22, -1	22>	raxrz =	$\sqrt{1+y_{2}^{2}+y_{2}^{2}}$	2
$ r_{\alpha} \times r_{z} =$	$=\sqrt{1+4\pi}$	27422	Ξ	$\sqrt{1+4x^{2}+4}$	4Z ² .
A(S) = {() D	$\int Y_{x} \times r_{z} $	$dA = \int_{\chi^2 7}$	$\int_{z^2 \neq 4} \sqrt{1+}$	$\frac{1}{4\chi^2+4\chi^2}d$	4
Using p	olar coordin	otes ; R	= r cos o, z	-= reino,	
A(S) =	$\int_{0}^{2\pi}\int_{0}^{2}$	$\sqrt{1+4r^2}$	erez, o: •rdrdo	$e 0 = 2\pi$ $1 + ar^2 -> du =$	GIDE
- 21	$T \cdot \frac{1}{8} \int dx$	σδη =	T · 2/3	$\left[(1+4r^2)^3 \right]$	2 2 2 0
= 7	F [(17)3	-1]			

78=6 **Example 11** (16.6). Consider that S is the part of the sphere $x^2 + y^2 + z^2 = 36$ that lies within the planes z = 0 and $z = 3\sqrt{3}$. (a) Find a parametric representation for the surface S. $z = 3\sqrt{3}$ (b) Find the surface area of the surface S. (0) $r(\varphi, 0) = \langle 6sin\varphi coso, 6sin\varphi sino, 6cos\phi \rangle$ Clearly $0 \leq 0 \leq 2\pi$. 5 $Z = 3\sqrt{3} \Rightarrow 6 \cos \phi = 3\sqrt{3}$ $\Rightarrow cot \phi = \sqrt{3} \Rightarrow \phi = T$ Y $z = 0 \Rightarrow \phi = \frac{\pi}{2}$ r $S_0, \overline{T} \leq \varphi \leq \overline{T}$ That is, $D = \frac{2}{\rho}(\rho, \sigma)$: $T_{\gamma} = \rho = T_{\gamma}, 0 = \sigma \leq 2T_{\gamma}$. (b) Recoll that | rox rol = s2 sind = 36 sind. $A(s) = \int \int |r_{\varphi} \times r_{\varphi}| dA = 36 \int \int \int \frac{2\pi}{2} \sin \varphi \, d\varphi \, d\varphi$ $= \frac{36}{\binom{2\pi}{0}} \frac{1}{0} \left(\int_{\pi}^{\pi} \frac{1}{2} \sin \phi \, d\phi \right)$ $= 36 \cdot 2\pi \cdot - \cos\phi \Big|_{T_2}^{T_2} = 72\pi \left[0 + \frac{\sqrt{3}}{2}\right]$ = 36 TZ TT

Example 12 (16.6). Find the area of the part of the surface $z = 1 + 2x^2 + 3y$ that lies above the region bounded the triangle with vertices (0,0), (2,0), and (2,4).

