- 1. Evaluate the line integral $\int_C x \, dS$, where C is the arc of the parabola $y = x^2$ from (1,1) to (2,4).
- 2. Evaluate $\int_C 7y^2z \, dS$, if C is given by $\mathbf{r}(t) = \left\langle \frac{2}{3}t^3, t, t^2 \right\rangle$, $0 \le t \le 1$.
- 3. Find the work done by the force field $\mathbf{F}(x, y, z) = \langle z, x, y \rangle$ in moving a particle from the point (3, 0, 0) to the point $(0, \pi/2, 3)$
 - (a) along the straight line
 - (b) along the helix $x = 3\cos t$, y = t, $z = 3\sin t$
- 4. Let $\mathbf{F}(x,y) = <3 + 2xy^2, 2x^2y >$.
 - (a) Show that **F** is conservative vector field.
 - (b) Find its potential function.
 - (c) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is any path from (-1,0) to (2,2).
- 5. Given the vector field $\mathbf{F} = z\mathbf{i} + 2yz\mathbf{j} + (x+y^2)\mathbf{k}$.
 - (a) Find the divergence of the field.
 - (b) Find the curl of the field.
 - (c) Is the given field conservative? If it is, find a potential function.
 - (d) Compute $\int_C z \, dx + 2yz \, dy + (x+y^2) \, dz$ where C is the positively oriented curve $y^2 + z^2 = 4, x = 5$.
 - (e) Compute $\int_C z \, dx + 2yz \, dy + (x+y^2) \, dz$ where C consists of the three line segments: from (0,0,0) to (4,0,0), from (4,0,0) to (2,3,1), and from (2,3,1) to (1,1,1).
- 6. Given the line integral $I = \oint_C 4x^2y \, dx (2+x) \, dy$ where C consists of the line segment from (0,0) to (2,-2), the line segment from (2,-2) to (2,4), and the part of the parabola $y=x^2$ from (2,4) to (0,0). Use Green's theorem to **evaluate** the given integral and **sketch** the curve C indicating the *positive direction*.
- 7. Find a parametric representation of the following surfaces:
 - (a) the portion of the plane x + 2y + 3z = 0 inside the cylinder $x^2 + y^2 = 9$;
 - (b) $z + zx^2 y = 0$;
 - (c) the portion of the cylinder $x^2 + z^2 = 25$ that extends between the planes y = -1 and y = 3
- 8. Find an equation of the plane tangent to the surface $x = u, y = 2v, z = u^2 + v^2$ at the point (1, 4, 5).
- 9. Find the area of the surface with parametric equations $x=u^2, \ y=uv, \ z=\frac{1}{2}v^2, \ 0\leq u\leq 1, \ 0\leq v\leq 2.$ $x^2+z^2=1$ which lies between the planes y=0 and x+y+z=4.
- 10. Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 4$.