

Math 152 - Week-In-Review 11

Sinjini Sengupta

Eliminate the parameter to find the Cartesian equation of the curve.

1. $x = t^2 - 3$, y = t + 2, $-3 \le t \le 3$

2. $x = \sin t, \ y = 1 - \cos t, \ 0 \le t \le 2\pi.$

3.
$$x = \sqrt{t}, y = 1 - t$$
.

4. Sketch the curve given by $x = \sin 4\theta$, $y = \cos 4\theta$, $0 \le \theta \le \pi/2$ and indicate the direction of the curve that is traced as the parameter increases.

5. Describe the motion of the particle with position (x, y) given as $x = 2 + \sin t$, $y = 1 + 3\cos t$, as t varies from $\pi/2$ to 2π .

6. Set up an integral to find the length of the part of the parametric curve given by $x = t + e^{-t}, \ y = t^2 + t, \ 1 \le t \le 2.$

7. Find the exact length of the curve $x = e^t - t$, $y = 4e^{t/2}$, $0 \le t \le 2$.

8. Set up an integral to represent the surface area obtained by rotating the curve $x = \sin t$, $y = \sin 2t$, $0 \le t \le \pi/2$ about the x-axis.

9. Find the surface area obtained by rotating the curve $x = t^3$, $y = t^2$, $0 \le t \le 1$ about the x-axis.

10. Give the polar coordinates for the cartesian point (x, y) = (-4, 4) when r > 0 and when r < 0.

11. Plot the point and find the cartesian coordinates for the polar point $(r, \theta) = (-1, -\pi/6)$.

12. Sketch the region given by $0 \le r \le 1, -\pi/2 \le \theta \le \pi/2$.

13. Find the cartesian equation for the polar curve $r^2 = 10$.

14. Find the cartesian equation for the polar curve $r^2 \sin 2\theta = 1$.

15. Find the polar equation for the cartesian curve $x^2 + y^2 = 4y$.

Brief overview of polar Curves:

16. Sketch the polar curve $r = -2\sin\theta$. State the bounds of integration to find the area inside the curve in the 3^{rd} quadrant? At what angles will the above curve intersect with the polar curve r = 1?

17. Find the area of the region enclosed by one loop of the curve $r = 4\cos 3\theta$. Can you use symmetry in this case? What about for one loop of the curve $r = 4\sin 3\theta$?

18. Find the area of the region inside the curve $r = 3\cos\theta$ and outside the curve $r = 1 + \cos\theta$.