Math 152/172

- 1. Given the sequence $\{a_n\} = \left\{2, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \cdots\right\}$
 - (a) Find the formula for the *n*-th term a_n
 - (b) Find the limit of the sequence.
 - (c) Is this a monotonic sequence?
 - (d) Is this a bounded sequence?

2. Is the sequence given by $a_n = \frac{\ln n}{n}$ increasing or decreasing? Find the limit of the sequence.

3. Find the limit of the sequence

(a)
$$a_n = \cos(\pi n)$$

(b) $a_n = \frac{5 - 2n - 3n^2}{6n^2 + n - 6}$
(c) $a_n = \left(1 + \frac{3}{n}\right)^{2n}$
(d) $a_n = \frac{4 + (-1)^n}{n}$

4. Find the limit of the sequence $\{a_n\}$ given recursively

$$a_1 = 2, \quad a_{n+1} = 1 - \frac{1}{a_n}$$

if it converges.

5. Find the limit of the sequence $a_n = \frac{(-1)^n(n^2+2)}{3n^2+1}$ or show that it converges.

6. Find the third partial sum s_3 of the series $\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n}$.

- 7. The *n*-th partial sum of the series is $s_n = 3 n2^{-n}$.
 - (a) Find a_n
 - (b) Find the sum of the series.
- 8. Find the *n*-th partial sum of the series $\sum_{n=1}^{\infty} \frac{3}{n^2 + n}$. Does the series converge? If yes, find the sum of the series?

9. Find the sum of the series
$$\sum_{n=3}^{\infty} 10 \left(\frac{2}{5}\right)^{n-1}$$

10. Find the sum of the series
$$\sum_{n=0}^{\infty} \left[\frac{1}{5^n} + \left(\frac{2}{3} \right)^n \right].$$

11. Determine whether the series is convergent or divergent. If it converges, find its sum.

(a)
$$\sum_{n=0}^{\infty} \frac{1}{4+e^{-n}}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2^n + 1}{e^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{e^n}{n^3}$$