7.4: BASIC THEORY OF SYSTEMS OF
1ST-ORDER LINEAR EQUATIONS
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¢ Existence and uniqueness: Consider the initial value problem

ATt X =PEx+gl).  xit)=x.

A—f-au.t.be&n?tﬁries of P(t)and g(t) are continuous functions on an openinterval
I = (a,b),then there exists a unique solution to the initial value problem on

the interval 1.

e Principle of superposition: If x(!) and x(? are solutions to the differential
equation x’ = P(t)x, then
crx 4 cpx?
is also a solution.

e Wronskian for vector functions: If x(!), .. x(™ are all n-vectors, then their
Wronskian is defined as

=[2m
Wi, <) = det X (1), X0 (X - Ii”“‘]
where X(t) is the matrix whose columns are xV), ., x(").

e Fundamental set of solutions: Suppose P(t) is ann x n matrix. Then, x(1),
.., x" is a fundamental set of solutions if their Wronskian is nonzero.

e General solution
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e Abel's theorem: If x!), ., x(") are solutions to x’ = P(t)x on an interval I,
then their Wronskian is either always zero or never zero on 1.

Practical consequence: You only need to check the Wronskian at a single
point in the interval where the solution exists.



Exercise 1

Where is the following initial value problem guaranteed to have a unique solution?
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Exercise 2

Where is the following initial value problem guaranteed to have a unique solution?
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Exercise 3
Consider the system of differential equations

,[10 =5
X =18 —12/%

Is the following a fundamental set of solutions?
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Exercise 4
Consider the system of differential equations
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Is the following the general solution?
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7.5: HOMOGENEQOUS LINEAR SYSTEMS
WITH CONSTANT COEFFICIENTS

Review

e How to solve ahomogeneous linear system with constant coefficients (when
you have distinct real eigenvalues)

1. Assume your solution has the form x(t) = &e™.

2. Plug this in to get an eigenvalue problem.

3. Solve for the eigenvalues r; and ry and the corresponding eigenvectors
¢Wand ¢?.

4. The general solution is c;&€Went + cygPert,

e Phase plane/portrait: A phase plane/portrait is essentially a 2D version of
the phase line. It shows you where the solution moves as time passes.

e An equilibrium pointis a point where if you start there, you will remain there
forever. The origin is always an equilibrium point of the differential equation
system x’ = Ax.

e Stability of equilibrium points
— ‘Asymptotically stable: If you start near the equilibrium point, you will
be sucked intoitast — oc.

— Stable: If you start near the equilibrium point, you will stay near it.

— Unstable: There is at least one point near the equilibrium point that
goes away from the equilibrium point.



Exercise 5

Find the general solution, sketch the phase plane, and determine the stability of
the equilibrium point at the origin.
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Solve the initial value problem when x(0) = % . Draw this solution on the phase

plane and sketch the graph of z1(t) and ().
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Exercise 6

Find the general solution, sketch the phase plane, and determine the stability of
the equilibrium point at the origin.

Ty = =511 + 4o
3
/
=—-11—4
Ly = 22171 I9

roA R B B N
v [/ _ ]x
Clocden st & - r+av 2|y =0

(r2 Y-+ =0

r=-2,-7
e?ﬂ&-bco{w fo. v=2:

-3 4 |2 - ‘3'2,—#'1"21:(7
3/ _2 5:0 ":>
3
1
q !

303045 7 [»J:( /]

Cy«.ucatw fou = -



jf%{\ml 40[.)[ o

(xm [1] ”[Yj

bg
4\ f':-z

' /

T[L‘ 0"”7'7" 1y an 45‘7“]047’\/@4'”‘7 (;/7714

hodle,



Exercise 7

Find the general solution, sketch the phase plane, and determine the stability of
the equilibrium point at the origin.
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7.6 COMPLEX EIGENVALUES

Review

e To solve the system x’ = Ax when you have complex eigenvectors:

— Solve for just one of the eigenvectors.
— Separate €¢'? into its real and imaginary parts.
— The real and imaginary parts form a fundamental set of solutions.

* (Assuming that A is 2 x 2. If A is larger, than there are also more
solutions.)



Exercise 8

Find the general solution, sketch the phase plane, and determine the stability of
the equilibrium point at the origin.

¥ =3x+y
Yy = —2x+y
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Exercise 9

Find the general solution, sketch the phase plane, and determine the stability of
the equilibrium point at the origin.
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Exercise 10

Find the general solution, sketch the phase plane, and determine the stability of
the equilibrium point at the origin. Solve the initial value problem with x(0) =
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