MATH 308: WEEK-IN-REVIEW 9 (6.6, 5.1, 5.2)

# 1 6.6: Convolution

Review

• The convolution of two functions f(t) and g(t), denoted (f \* g)(t), is defined by

$$(f * g)(t) = \int_0^t f(x)g(t - x) \, dx$$

for  $t \ge 0$ , assuming both functions are zero for t < 0.

• The Laplace transform of a convolution (f \* g)(t) is

$$\mathcal{L}\{(f * g)(t)\} = F(s) \cdot G(s),$$

where  $F(s) = \mathcal{L}{f(t)}$  and  $G(s) = \mathcal{L}{g(t)}$ .

- This property simplifies solving differential equations by converting convolution in the time domain to multiplication in the s-domain.
- Convolution is commutative: f \* g = g \* f so

$$(f * g)(t) = \int_0^t f(x)g(t - x) \, dx = \int_0^t f(t - x)g(x) \, dx.$$



1. Find the following convolutions using the definition only

(a)  $e^{2t} * e^{4t}$ 

(b)  $t^2 * t$ ,



- 2. Using the Laplace transform (instead of the definition) compute the following convolutions
  - (a)  $u_2(t) * u_3(t)$

(b)  $t^2 * t$ ,



3. In each of the following cases find a function (or generalized function) g(t) that satisfies the equality for  $t\geq 0$ 

(a) 
$$t^2 * g(t) = t^5$$

(b)  $1 * 1 * g(t) = t^3$ 

(c) 1 \* g(t) = t



4. Write the inverse Laplace transform in terms of a convolution integral

$$F(s) = \frac{s^2}{(s+2)^3(s+5)^2}$$



5. Solve the initial value problem

$$y'' - 3y' + 2y = h(t), y(0) = 2, y'(0) = -1.$$



#### 2 5.1–5.2: Power Series Solutions of Linear Differential Equations

#### Review

• A power series solution of a linear differential equation assumes the solution can be written as

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

where  $x_0$  is the center of the series (often  $x_0 = 0$ ), and  $a_n$  are coefficients to be determined.

• The derivatives of the power series are:

$$y'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}, \quad y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n (x - x_0)^{n-2},$$

obtained by term-by-term differentiation, assuming the series converges in some interval.

- For a linear differential equation of the form P(x)y'' + Q(x)y' + R(x)y = 0, substitute the power series for y, y', and y'' into the equation, equate coefficients of like powers of  $(x x_0)$ , and solve for the recurrence relation among the  $a_n$ .
- A point  $x_0$  is an ordinary point if  $P(x_0) \neq 0$  and the coefficients Q(x)/P(x) and R(x)/P(x) are analytic at  $x_0$ . In this case, the series solution converges in some interval around  $x_0$ .
- The radius of convergence of the series solution is at least as large as the distance from  $x_0$  to the nearest singular point (where P(x) = 0), determined by analyzing the coefficient functions.
- Solutions typically yield two linearly independent series  $y_1(x)$  and  $y_2(x)$ , whose Wronskian  $W[y_1, y_2](x_0) \neq 0$  confirms their independence.



6. Determine the radius of convergence for the power series

(a) 
$$\sum_{n=0}^{\infty} \frac{x^{3n}}{n!}$$

(b) 
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3 (x-1)^n}{4^n}$$

7. For the equation y'' - xy' + xy = 0

- (a) Determine a lower bound for the radius of convergence for the series solutions about  $x_0 = 0$ .
- (b) Seek its power series solution about  $x_0 = 0$ . Find the recurrence relation.
- (c) Find the general term of each solution  $y_1(x)$  and  $y_2(x)$ .
- (d) Find the first four terms in each of the solutions. Show that  $W[y_1, y_2](0) \neq 0$ .