- 1. Let $f(x, y) = \sin(xy) + \pi$. Find $f(1, \pi/2)$.
- 2. Let f(x, y, z) = y + xz. Find f(-3, 2, 1).
- 3. Find the domain and range of the functions:
 - (a) $f(x,y) = \ln(2 x^2 y^2)$;
 - (b) $f(x, y, z) = e^{-\frac{1}{x^2 + y^2 + z^2}}$
- 4. Sketch the graphs of the functions:
 - (a) $f(x,y) = x^2 + y^2 3$
 - (b) $f(x,y) = \sqrt{4 x^2 y^2}$
 - (c) f(x,y) = -2x 4y + 4
- 5. Classify all level curves of the functions
 - (a) $f(x,y) = \sqrt{x-y}$
 - (b) $f(x,y) = e^{-x^2 y^2}$
- 6. Describe level surfaces of the function $f(x, y, z) = -x^2 y^2 z^2$
- 7. Find the first partial derivatives of the functions
 - (a) $f(x,y) = x^4 + 5xy^3$
 - (b) $f(x,y) = y^2 \cos(xy)$
 - (c) $f(x,y) = x^y$
 - (d) $f(x, y, z) = xy^2 e^{-xz}$
 - (e) $f(u, v, w) = \sqrt{u^4 + v^2 \cos w}$
- 8. Find all second-order derivatives of the function
 - (a) $z = xe^{-2y}$
 - (b) $v = r\cos(x + 2t)$
- 9. Where does the plane tangent to the surface $z = e^{x-y}$ at (1,1,1) meet the z-axis?
- 10. Show that the surfaces given by $f(x,y) = x^2 + y^2$ and $g(x,y) = -x^2 y^2 + xy^3$ have the same tangent plane at (0,0).
- 11. Find the differential of the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

12. Use differentials to estimate

$$\sqrt{(4.01)^2 + (3.98)^2 + (2.02)^2}$$

13. The two legs of a right triangle are measured as 5 m and 12 m respectively, with a possible error in measurement of at most 0.2 cm in each. Use differentials to estimate the maximum error in the calculated value of the area of the triangle.

14. If $z = y + f(x^2 - y^2)$, where f is differentiable, show that

$$y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = x$$

15. Let

$$w = \cos xy + y\cos x,$$

where

$$x = e^{-t} + 3s, \ y = 5e^{2t} - \sqrt{s}$$

Find $\frac{\partial w}{\partial t}$ and $\frac{\partial w}{\partial s}$.

16. If

$$yz^4 + xz^3 = e^{xyz}$$

find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$.