2024 Fall Math 140 Week-In-Review

Week 10: Sections 5.5 and 5.6

Some Key Words and Terms: Piecewise Functions, Absolute Value Functions, Domain of a Piecewise Functions, Exponential Expressions, Exponential Functions, Growth vs. Decay, Rewriting Bases.

Piecewise Functions: Literally a function that is defined by separate pieces & those pieces correspond to specific ranges of x-values.

Absolute Value Function: Every absolute value functions is really just a piecewise synction. Crear obsolute functions, will work in one of two ways:

(i) It absolute sport has positive slope (2) It absolute value port has negative slope multiply important by It almost a process.

(i) work within each piece by sinding the intersection of the daman by the given range of x-values.

(2) And the union of the results from each piece.

Exponential Expressions: any expression by a numerical base, b, with a variable in the exponent AND b > 0.

With a variable in the exponent AND b > 0.

A we will never have negative bases in Math 140 on 142 A.

(5) (7-x)

(6) (7-x)

2x-1

Exponential Functions: functions defined by exponential expressions Again, base cannot be regative or zero # w/ functions, we also disregard a base of 1 to blc 1 = 1 f(x)= Growth vs. Decay: Growth: f(x)=a.bx \$ b > 1 \$\times \text{i.e. } \(\text{F(x)} = 2^{\text{x}} \) y-int: (0,1) D: (-00,00) R: (0,00) x-int: none as x > -00, y > 0 * neither one will ever as x > -00, y > 00
as x > 00, y > 00 equal zero * as x > 00, y > 0 as x > 00, y > 00 · Rewriting the numerical bases in simplest numerical form . Often the case that we want to combine exponential terms to combine exponential terms, they must have the same losse $25^{\times} \rightarrow (5^{2})^{\times} = 5^{2\times}$ $8^{\times} \rightarrow (2^3)^{\times} \rightarrow 2^{3\times}$ $\left(\frac{1}{4}\right)^{\times} = \left(\frac{1}{2^{2}}\right)^{\times} = \frac{1}{2^{2\times}} - \cdots$ $27^{\times} \rightarrow (3^3)^{\times} \rightarrow 3^{3\times}$

Examples:

1. For the given piecewise functions, determine the given value of the function, if it exists.

(a)
$$g(x) = \begin{cases} \frac{1}{x+8} & \text{if } x \le -7 & \bigcirc \\ xe^x & \text{if } -7 < x < -1 \\ 3x^2 + 2x - 1 & \text{if } x \ge 1 & \boxed{3} \end{cases}$$

i.
$$f(-9) = x = -9$$
 $-9 \le -7 \checkmark$ so $f(-9) = \frac{1}{-9+8} = \boxed{1}$
ii. $f(-7) = x = -7$ $-7 \le -7 \checkmark$ so $f(-7) = \frac{1}{-7+8} = \boxed{1}$

$$ii. f(-7) = x = -7$$
 $-7 = -7 = -7 = 1$

iii.
$$f(0) = X = 0$$

$$0 = -7 \times 7 \text{ if } X = 0 \text{ is not included}$$

$$-7 < 6 < -1 \times 7 \text{ in any interval, then}$$

$$0 \ge 1 \times 7 \text{ (0) DNE}$$

(b)
$$k(x) =\begin{cases} \sqrt{7-4x} & \text{if } x \le -3 & \text{if } x \le -5 \\ \frac{x(x-1)}{(x-1)(x+1)} & \text{if } -3 < x < 3 & \text{if } x \ge 3 \end{cases}$$

$$12\left(\frac{1}{2}\right)^{x} & \text{if } x \ge 3 \end{cases}$$
i. $f(-5) = \sqrt{7-4(-5)} = \sqrt{7+20} = \sqrt{3} = \sqrt{3}$
ii. $f(0) = \sqrt{(0)(0-1)} = \sqrt{(0)(0-1)} = \sqrt{(0)(0-1)}$

i.
$$f(-5) = \sqrt{7 - 4(-5)} = \sqrt{7 + 20} = \sqrt{27} = 3\sqrt{3}$$

ii.
$$f(0) = \frac{(0)(0-1)}{(0-1)(0+1)} = \frac{0}{-1} = \boxed{0}$$

iii.
$$f(3) = \left(2 \cdot \left(\frac{1}{2}\right)^3 = \left(2 \cdot \frac{1}{8}\right) = \frac{12}{8} = \frac{3}{8}$$

$$test \\ x = 0$$
 $test \\ x = 3$ $test$

3)
$$f(x) = \begin{cases}
7-3x, & x < 17/3 \\
-(7-3x), & x = 17/3
\end{cases}$$
doesn't matter
which has "="part
as long as only one
as long as only one

(b)
$$h(x) = 4[2x + 7] + 5$$

$$\begin{array}{ccc}
1 & 2x + 7 = 0 \\
2x = -7 \\
x = -7/2
\end{array}$$

6. For the following functions, determine the domain and classify them as an exponential function or not. If it is an exponential function, determine if it is exponential growth or exponential decay.
(a) $f(x) = \frac{x^2(x-1)}{x(x-1)(x+8)}$ $\times (x-1)(x+8) \neq 0$ $ \times (x-1$
(b) $g(x) = 3 \cdot (5)^x$ no restrictions D: $(-\infty, \infty)$ \$\frac{1}{2}\$ is exponential base = $(5 > 1)$ exponential growth
(c) $j(x) = \sqrt{19-5x}$ even root: $19-5 \times 20$ $-5 \times 2-19$ $\times \leq 19/5$ (raviable)
(d) $g(x) = (-6)^{x+2}$ even though we have (number) this is Not exponential blc the base is regarine. The restrictions $D: (-\infty, \infty)$
(e) $j(x) = (9)^{-4x}$ no restrictions D: $(-\infty, \infty)$ & it is exponential is negative we must be careful. At $j(x) = (q)^{-4x} = (q)^{4x}$ so base is actually q . Since $0 < q < = $ exponential decay
since $0 < \frac{1}{9} < $

8. You decide to change cellphone providers. Your new provider offers unlimited calls and up to (and including) 25 GB of data for \$50 per month. If you use more than 25 GB of data, then you're charged \$1.50 per additional GB after 25 GB up to (and including) 40 GB of data. If you use more than 40 GB of data per month, then you're charged \$1.00 per additional GB after 40 GB. Write a piecewise function, $C(d)$, representing the monthly cost in dollars, C , for using d GB of data. Scenerios: (a) Use O to 25 Gigs \rightarrow Cost = (\$60)(\$\delta\$) + (\$\delta\$50) (b) Use O to 25 Gigs \rightarrow Cost = (\$\delta\$0)(\$\delta\$) + (\$\delta\$50) (cach gig offer 25) (a) Use nore than 40 \rightarrow (ost = (\$\delta\$1.50)(\$\delta\$-25) + (\$\delta\$50) (cach gig offer 40) (cach gig offer 40)	l (cst)
9. You invest \$7,500 in a savings account that earns 4.3% annual interest compounded continuously. How much money will be in the savings account after 10 years if you make no more deposits? Round your answer to the nearest cent. (2 decimals) A = Pert (must know this) A = future amount of \$\frac{1}{2}\$ P = initial/starthy amount of \$\frac{1}{2}\$ T = interest rate (as a decimal) T = interest rate (as a decimal) T = interest rate (as a decimal) T = 10 A = 11529.43143 The amount in the account After (0 years is \$\frac{1}{2}\$ 11,529.43	