

Section 2.5

• The Chain Rule: If f and g are differentiable functions, then the composite function m(x) = f(g(x)) is differentiable and is given by

$$m'(x) = f'(g(x)) \cdot g'(x)$$

- Specific Cases of the Chain Rule:
 - If $y = (g(x))^n$ then $y' = n(g(x))^{n-1} \cdot g'(x)$
 - If $y = e^{g(x)}$ then $y' = e^{g(x)} \cdot g'(x)$
 - If $y = b^{g(x)}$ then $y' = \ln b \cdot b^{g(x)} \cdot g'(x)$
 - If $y = \ln(g(x))$ then $y' = \frac{1}{g(x)} \cdot g'(x)$
 - If $y = \log_b \left(g(x) \right)$ then $y' = \frac{1}{\ln b} \cdot \frac{1}{g(x)} \cdot g'(x)$

On Problems 1-9, find the derivative of the function.

1.
$$f(x) = (7x^2 + 9x + 4)^{10}$$

2.
$$g(x) = 5e^{-5x^2}$$

3.
$$h(x) = \log_7 (2x^4 - 3x + e^x)$$

4.
$$g(x) = 4x \left(2^x + \sqrt[5]{x^2} + \frac{5}{x}\right)^9$$

$$5. \ f(t) = \frac{3}{\sqrt[5]{7t^3 + 2^t}}$$

6.
$$k(x) = \left(\frac{7x}{3x^3 - 4}\right)^8$$

7.
$$L(x) = 3x^9 \cdot 9^{(2x^7 + 4x)}$$

8.
$$m(t) = (\log_8 (5 + 4e^t))^9$$

9.
$$C(t) = \ln\left(\frac{4(3t-7)^3\sqrt[6]{4t+7}}{5t^2-4}\right)$$

10. If
$$f(x)$$
 is a differentiable function with $f(0) = 1$ and $f'(0) = 2$, what is $g'(0)$ if $g(x) = \frac{(4f(x) + x^2)^8}{e^x}$?

11. Find the equation of the line tangent to the curve of $f(x) = \sqrt[9]{32x^2} + \ln[(x-3)^3]$ at x=4.

12. Anna has a bank account that earns interest at a rate of 3.4% per year compounded continuously. If she placed \$3,000 into the account when she opened it, at what rate (in dollars per year) is the account growing after 10 years?

13. The profit function for a company that sells water flossers is given by $P(x) = 10\sqrt{x^2 - 1} - 200$, when x water flossers are sold. Find (and interpret) the marginal profit (in dollars per water flosser) when 50 water flossers are sold.

Section 2.6 Part 1 - Implicit Differentiation

- Sometimes we want to find the derivative of a function but cannot easily solve for y. In these situations we can use **implicit differentiation** to find the derivative $\left(y' = \frac{dy}{dx}\right)$ by following these steps:
 - Take the derivative with respect to the independent variable (typically x) of both sides. Use the Chain Rule when necessary.
 - Move all terms that have $\frac{dy}{dx}$ in it to the left-hand side and all terms that do not have $\frac{dy}{dx}$ in it to the right-hand side.
 - Factor $\frac{dy}{dx}$ out of all terms on the left-hand side and solve for $\frac{dy}{dx}$.

For problems 14-17, use implicit differentiation to find $\frac{dy}{dx}$.

14.
$$7x - 14e^x + \sqrt[3]{y} = y - 2x^2 + 9$$

15.
$$5e^{2x} - 4\sqrt{y} = 3x^2 - 5^y$$

$$16. \ 3xe^y - 7x^2y^3 = 10$$

17.
$$\frac{3x^2 - 4y}{e^y + 7} = x$$

18. For the equation given, evaluate $\frac{dy}{dx}$ at the point (1,0).

$$y = \ln\left(10x^3 - 4y^5\right)$$

19. Find the equation of the line tangent to the curve of $\sqrt{x} - \sqrt{y} = 1$ at the point (9,4)